If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-125x-500=0
a = 5; b = -125; c = -500;
Δ = b2-4ac
Δ = -1252-4·5·(-500)
Δ = 25625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25625}=\sqrt{625*41}=\sqrt{625}*\sqrt{41}=25\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-125)-25\sqrt{41}}{2*5}=\frac{125-25\sqrt{41}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-125)+25\sqrt{41}}{2*5}=\frac{125+25\sqrt{41}}{10} $
| 3(1-2x)=3x+7 | | 2b+24=b | | 5n+12=2n+48 | | 2.4x+2.8=10 | | 4y+5=6y+7 | | 3u-74=u | | 3b−2=10 | | X(2x-1)(4x+9)=0 | | 3g−14=1 | | 10b-88=9b-77 | | 1=3g−14 | | 3c-59=4c-89 | | 0.75x^2+0.25=0 | | x/3-x/4=12 | | 4y+5=6y=7 | | 6s-9=5s | | 4(x-5(=18 | | w+20=8w-43 | | 2p+20=p+85 | | 11(x+10=132 | | 0.30(x+15)+0.40(x+25)=25 | | X^2+10x-65=0 | | 14=20–8x | | 6b-84=2b | | 9x^+6x+1=0 | | 5t-21=6t-35 | | 3n=-4n+7 | | 143=-8-5(5b+7) | | 18-5f=27+4 | | n-8=15-4 | | 8(9-3b)=24 | | X=2+3(90-x) |